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Abstract

A new decision support system called Apollo, which runs the CERES-Maize crop growth
model, was used to study the corn (Zea mays L.) yield response and the nitrogen (N) dynamics
of a cornfield in central Iowa, USA. The model was calibrated to minimize error between sim-
ulated and measured yield over five growing seasons. Model simulations were then completed
for 13 spring-applied N rates in each of 100 grid cells with varying soil properties. For each N
rate and grid cell, simulations were repeated for 37 years of historical weather information col-
lected near the study site. Model runs provided the crop yield and unused N in the soil at har-
vest for all combinations of N rate, grid cell, and weather year. Using these simulated datasets,
a methodology involving cumulative probability distributions was developed such that the yield
and unused N resulting from each N rate applied in each grid cell could be directly linked
according to their probability of occurrence over the 37 simulated growing seasons. These
cumulative probability distributions were used to evaluate the economic and environmental
risks of two alternate precision N management strategies for the study area. In the first strategy,
N rates were selected to maximize the producer�s marginal net return in each grid cell. The envi-
ronmental cost of this management strategy, in terms of N left behind, was determined to be
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56.2 kg ha�1 on average over all grid cells. In the second strategy, N rates were selected to
insure that the amount of N left in the soil at harvest would not exceed 40 kg ha�1 in 80% of
growing seasons. The producer�s opportunity cost for reducing N rates to achieve this environ-
mental objective was calculated to be $48.12 ha�1 on average over all grid cells. The overall goal
of this work was to develop a methodology for directly contrasting the production and environ-
mental concerns of N management in agricultural systems. In this way, N management plans
can be designed to achieve a proper balance between production and environmental goals.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

With the increased use of yield monitors on grain combines in the past decade
(Searcy et al., 1989), crop yield has repeatedly been shown to exhibit substantial spa-
tial variation across individual fields (Jaynes and Colvin, 1997). In addition, airborne
and satellite remote sensing imagery has shown similar variation in crop growth and
development throughout the growing season (GopalaPillai and Tian, 1999). Such
datasets have demonstrated the potential for variable-rate applications of nitrogen
(N) fertilizer, based on the site-specific crop need.

Applying N fertilizer site-specifically also makes sense from an environmental per-
spective. Bakhsh et al. (2000) identified several properties of the agricultural land-
scape that altered its susceptibility to movement and loss of nitrate-nitrogen
(NO3-N). These include soil type, topography, soil moisture, tile drainage, and till-
age practices. Thus, a robust method for determining appropriate N application
rates must consider the spatial variability of the agricultural landscape�s NO3-N loss
risk, as well as the spatial variability of the crop�s N need. In this way, N prescrip-
tions can be tailored to address both production and environmental concerns.

In addition to the spatial aspects of N management, there is also a complex tem-
poral problem that arises due to the unpredictable nature of weather patterns. Pre-
cipitation events drive the movement of NO3-N through the agricultural system, and
rainfall is necessary for the crop to uptake NO3-N from the soil. However, problems
arise when precipitation events, NO3-N availability, and crop need do not coexist in
time (Dinnes et al., 2002). For example, in the midwestern United States, N is most
commonly applied in the fall or spring, prior to planting corn. Nitrogen applied at
these times has the greatest potential for loss to the environment, because snow melt
and heavy rains in the spring season can move NO3-N out of the agricultural system
prior to crop uptake. A similar problem exists during seasons of drought. For this
case, suppose NO3-N is made available through side-dress applications of N fertilizer
at mid-season. Although NO3-N is now available during the time of peak N demand,
the lack of water prevents the crop from removing all the NO3-N from the soil. The
excess NO3-N is then available for loss during precipitation events that occur after
harvest, when the crop no longer needs it. Unfortunately, when making N manage-
ment decisions, knowledge of future weather patterns and precipitation events is
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limited to the accuracy of seasonal forecasts. However, large sets of historical
weather data now exist for many portions of the world, and these datasets can be
used as an indicator of probable future weather patterns for an area. In this way, his-
torical weather data becomes a useful set of information for the development of N
management strategies that are conscious of the influence of weather patterns on
NO3-N movement through the agricultural system.

Over the past decade, researchers have focused on a wide variety of methods for
developing site-specific N prescriptions. An arsenal of sensing techniques has been
employed for identifying N deficient areas of crops, including airborne and satellite
remote sensing (Blackmer et al., 1996; Flowers et al., 2003), multispectral camera
systems on ground vehicles (Noh et al., 2003), and chlorophyll meter readings of
individual corn leaves (Schepers et al., 1992). Although these sensing techniques have
successfully identified N deficiencies, they do not effectively account for the spatially
varying properties of the agricultural landscape or weather patterns that affect NO3-
N losses from the agricultural system. Other researchers have attempted to develop
yield response functions by regressing crop yield against soil nutrient measurements,
such as late-spring NO3-N concentration (Katsvairo et al., 2003) and soil organic
matter (Schmidt et al., 2002). High r2 values for the relationship between crop yield
and soil nutrient levels have not been consistently obtained with this approach,
because the temporal aspects of N movement through the agricultural system cannot
be adequately characterized by a single equation. As a result, soil nutrient concentra-
tions based on point-in-time measurements have not been helpful for developing var-
iable-rate N recommendations. The greatest limitation in these approaches is that
none of them can adequately account for the fact that N movement depends heavily
on the temporal pattern of weather encountered during the growing season.

The CERES-Maize crop growth model (Jones and Kiniry, 1986) is another tool
that has been used to study precision N management for corn (Zea mays L.) (Paz
et al., 1999; Batchelor et al., 2002). This model utilizes carbon, N, and water balance
principles to simulate, in homogenous units, the daily processes that occur during
plant growth and development. The final corn yield for the simulated growing season
is then calculated on the harvest date. The model has been shown to adequately sim-
ulate corn growth, development, and yield on plot-level, field-level, and regional
scales for many locations around the world. Inputs required for model execution
include management practices (plant genetics, plant population, row spacing, plant-
ing and harvest dates, and fertilizer application amounts and dates), environmental
factors (soil type, drained upper limit, lower limit, saturated hydraulic conductivity,
root weighting factor, and effective tile drain spacing), and weather conditions (daily
minimum and maximum temperature, solar radiation, and precipitation). Since
CERES-Maize utilizes N balances for crop growth analysis, it can be conveniently
extended to calculate surface and subsurface NO3-N losses. For example, the model
has undergone several modifications such that NO3-N in run-off (Gabrielle et al.,
1995), tile flow (Garrison et al., 1999), and leaching (Gabrielle and Kengni, 1996)
can be simulated as part of the crop production process. Since CERES-Maize can
collectively account for many of the spatial and temporal factors that affect crop
yield and N movement through the agricultural system, it serves as a very useful
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and appropriate tool for developing N management strategies that address both the
economic and the environmental concerns of corn production.

A new decision support system called Apollo runs CERES-Maize and other
DSSAT crop models for management zones within a field (Batchelor et al., 2004).
Apollo is an interface that can be used to calibrate and validate model parameters
and execute model runs to achieve a variety of precision farming objectives, such
as prescription analysis and yield gap analysis. In this work, the Apollo system
was used to calibrate CERES-Maize and run N prescriptions for an Iowa cornfield
divided into 100 grid cells.

The overall objective was to use the results of the prescription simulations to
develop a methodology for estimating the economic and environmental trade-offs
of N management strategies for this cornfield. The existence of a trade-off between
the production and environmental concerns of N management is an important con-
cept, because of the dual opposing role that N plays in crop production and environ-
mental quality. Whereas N fertilizer is beneficial for maximizing crop production,
unused N fertilizer that is lost from the agricultural system poses a threat to environ-
mental quality, wildlife welfare, and human health. Therefore, N management strat-
egies of the future must aim to find the appropriate balance between these opposing
concerns. The first step in this endeavor is to develop a methodology for predicting
how a particular N management strategy will affect corn yield and unused N remain-
ing in the soil at harvest. With such a methodology, N management strategies can be
developed and implemented with a direct understanding of the cost to the producer
and the cost to the environment. In addition, the methodology could aid in the devel-
opment of environmental legislation and producer compensation programs that aim
to reduce the environmental risk of agricultural N management.
2. Methods

2.1. Data preparation

The study area included a 20.25 ha section of a production cornfield near Perry,
IA, USA (41.93080�N, 94.07254�W). This area was divided into 100 grid cells, each
45 m by 45 m in size. A digitized soil survey indicated that five primary soil types
were present in the study area: Canisteo silty clay loam, Clarion loam, Nicollet loam,
Harps loam, and Okoboji silty clay loam. Estimates of the physical properties for
these soils were obtained from two sources. Ratliff et al. (1983) provided the drained
upper limit (DUL) (cm3 cm�3) and lower limit for various soil textures. In addition,
values for the saturated hydraulic conductivity (KSAT) (cm d�1), bulk density (BD)
(g cm�3), and soil pH at various soil depths were obtained from the county soil sur-
vey (USDA-SCS, 1981). Saturated moisture content (SAT) (cm3 cm�3) was calcu-
lated from BD using

SAT ¼ 0:92� 1� BD

2:65

� �
. ð1Þ
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Each of the 100 grid cells was assigned the soil properties for the soil type that cov-
ered the largest area within the grid cell (Fig. 1). A Visual Basic for Applications
(VBA) script was created within the ArcGIS 8.2 software to create the grid layout,
clip the digital soil survey by grid cell, determine the soil type covering the largest
area, and write the soil parameters to a soil file for crop model runs (Thorp et al.,
2005a). This soil file was used for both the model calibration and the N rate prescrip-
tion simulations.

Five seasons of measured corn yield were available for crop model calibration.
Measured yield datasets were obtained using a yield monitor on a grain combine
during the 1994, 1996, 1998, 2000, and 2002 growing seasons. The VBA script in
ArcGIS was extended to clip the yield data by grid cell, calculate the average yield
for each grid cell, and write the yield files to a disk. The yield files were used to com-
pare measured and simulated yield during the model calibration phase.
Fig. 1. Soil types for the 20.25 ha study area divided into 100 grid cells.
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Weather files were created based on the availability of 37 years of historical
weather data collected near Perry, IA. These historical weather datasets allowed
for the simulation of N rate performance over the weather conditions of the past
37 growing seasons. In addition, weather information for 5 of the 37 growing sea-
sons was used in the model calibration. For years 1966 to 1995, weather data was
collected at the Perry grain elevator, 10 km from the study site. This data was
obtained from a historical weather database maintained by the Department of
Agronomy at Iowa State University (http://mesonet.agron.iastate.edu). For years
following 1995, weather data was collected using a weather station directly at the
site.

Soil water content, initial nutrient levels, and plant population were not available
for this site. Appropriate values were assumed and assigned uniformly to each grid
cell across the study area. In addition, since individual growing seasons were simu-
lated independently, initial conditions were specified uniformly for each growing sea-
son and carry over of soil water and nutrients between growing seasons was ignored.
Initial soil water content for each simulation was set to 0.3 cm3 cm�3, a value just
below the DUL for the soils in the field. Initial N levels were set arbitrarily to
0.1 g elemental N per Mg soil. For the purpose of this study, it was assumed that
the soil profile contained only a negligible amount of N at the beginning of the sea-
son. In practice, a producer would subtract pre-season soil nutrient levels from the N
fertilization rate recommendations generated with the simulation methodology
developed in this work. Finally, plant population was set to 7.4 plants m�2 based
on the average of population measurements collected during the 1996 growing sea-
son. These approximations for soil water content, initial nutrient levels, and plant
population were used for both the model calibration phase and for the N rate pre-
scription simulation phase.

Management practice model inputs were changed between the model calibration
phase and the N rate prescription simulation phase. To calibrate the model, the pro-
ducer�s actual planting date, actual harvest date, and actual fertilizer application
rates and dates were used for each of the 5 growing seasons available for calibration.
For the N rate prescription simulations, the planting and harvest dates were assumed
to be uniform across all 37 growing seasons. In this case, the dates of planting and
harvest were set to April 25 and October 12, respectively, based on the average of the
5 years of known management practice dates for this producer and study site. Also,
the model was set to apply all N on April 15 in each of the 37 seasons included in the
prescription simulations. Values for N rate were left blank in the model input file,
such that the Apollo decision support system could alternatively input various N
rates to test during the N prescription simulations.

2.2. Model calibration

Paz et al. (1999) developed a technique to calibrate the CERES-Maize crop
growth model for tile-drained soils in the Midwestern United States. The tech-
nique implements the simulated annealing algorithm to adjust model input param-
eters to minimize the error between measured and simulated yield within an area

http://mesonet.agron.iastate.edu
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of interest. In this work, this technique was implemented within the Apollo cali-
bration module to calibrate two CERES-Maize model parameters: KSAT of the
deep impermeable layer and effective tile drainage rate. Although a first estimate
of the KSAT value was obtained from the county soil survey, the range of param-
eter values for most soil types in the survey is very wide. The calibration proce-
dure served to fine-tune this parameter to more accurately represent the water
table dynamics of each grid cell. If a grid cell was properly drained, the calibra-
tion procedure generated a large value for the KSAT parameter. In this case, excess
water is more quickly lost out the bottom of the profile and water tables are kept
low or never form, which allow roots to grow deep in the soil profile. The calibra-
tion procedure would give small values for the KSAT parameter if a grid cell was
poorly drained. This causes water to move more slowly through the bottom soil
layer, water tables are kept high, and roots grow to more shallow depths within
the soil profile. The effective tile drainage rate controls the speed at which water is
lost through tile lines when the water table is above the tile. For each of the 100
grid cells at the study site, the technique of Paz et al. (1999) was used to solve for
the optimum set of the two model parameters that minimized the root mean
square error (RMSE) between simulated and measured yield for the five available
seasons of measured yield data. Parameters were calibrated uniquely for each grid
cell to account for spatial variability within the field. The objective function to be
minimized during model calibration with the simulated annealing algorithm can be
written as

RMSEi ¼
1

n
�
Xn

j¼1

ðYmi;j � Ysi;jÞ2
 !0:5

; ð2Þ

where Ymi,j is the measured yield and Ysi,j is the simulated yield in the ith grid cell for
the jth of n seasons of yield data. The model calibration procedure in Apollo pro-
vided the final minimized RMSE between measured and simulated yield for each
grid cell, which represents the error associated with optimizing the two soil param-
eters within the grid cells over the five calibration growing seasons. These RMSE val-
ues also serve as a performance indicator for the calibration procedure, where a
RMSE of less than 1000 kg ha�1 is roughly less than 10% error. After completing
a satisfactory calibration with acceptable RMSE values, the calibrated model param-
eters for each grid cell were used in an N prescription analysis within the Apollo
software.

Model validation is important for providing evidence that a calibrated model is
performing sensibly for calibration-independent datasets. Such model testing pro-
cedures were especially important for this work because model calibration was car-
ried out using data from only five growing seasons, and the calibrated model was
then used to simulate crop yield and unused N for an extended set of historical
weather over 37 growing seasons. Thus, the later simulations will only perform
as well as the calibration has successfully captured the key drivers of the observed
spatial variability. The details concerning model validation at this study site have
been explored and presented in previous work (Thorp et al., 2005b).



K.R. Thorp et al. / Agricultural Systems 89 (2006) 272–298 279
2.3. Nitrogen prescription analysis

Prescription analyses in Apollo use three nested loops to simulate crop yield and
N pooling for a set of N rates, management zones, and historical weather years.
First, Apollo loops through a series of user-defined N rates, running CERES-Maize
each time to assess the yield response and N pools for each N rate. To facilitate sim-
ulation of fall, spring, and side-dress applications, the user can also specify the fer-
tilizer application date. A second nested loop repeats the process for each user-
defined management zone or grid cell, and the third loop repeats the entire process
for all the available years of historical weather data for the field location. Thus, the
Apollo prescription module calculates information useful for studying yield response
and N pools, as if precision N management strategies had been used during the
weather patterns of previous growing seasons. In order to develop N management
strategies for the future, we simulate and analyze how N rates would have performed
in the past.

The Apollo prescription module was run for the study site to simulate the crop
yield response and the amount of N in four pools, including NO3-N in the soil at
harvest, NH4 in the soil at harvest, total NO3-N leached, and total NO3-N lost
out the tile. The four N pools were summed to generate a value for total unused
N at the end of the growing season. Model simulations were run for 13 N application
rates over 37 years of historical weather data near the study site (1966–2002). Sim-
ulated N rates ranged from 80 to 320 kg ha�1 at increments of 20 kg ha�1. While
running the prescription analysis, Apollo generated a text file containing the simula-
tion results for all combinations of N rates, grid cells, and weather years. Thus for
this work, the prescription output file contained 48,100 entries (13 rates * 37 years
* 100 grid cells).

2.4. Cumulative probability distributions

Prescription analyses in Apollo have the potential to generate a very large amount
of simulated data, depending on the number of grid cells, N rates, and weather years
used in the simulation. To condense this dataset for interpreting the effect of histor-
ical weather patterns on N mobility in the agricultural system, a methodology
involving cumulative probability distributions, which give the probability that a var-
iable takes a value lesser than or equal to a specified quantity, was developed. Two
families of cumulative probability curves were calculated for each grid cell: one for
yield and the other for unused N left in the soil at harvest. The first family provides
the cumulative probability of yield for each N rate over the number of weather years,
37 in this case. Each curve in this family represents the probability of obtaining crop
yield by applying the associated rate of N fertilizer consistently over a 37-year per-
iod. The second family gives the cumulative probability of unused N for each N rate
over the number of weather years. Each curve in this family represents the probably,
or risk, of leaving unused N in the soil when applying the associated N rate consis-
tently over a 37-year period. Using these two families of cumulative probability dis-
tributions together, the economic and environmental costs of applying various N
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rates can be compared, and N rates can be selected to accomplish objectives associ-
ated with both crop production and environmental protection. Because the two fam-
ilies of curves are unique for each grid cell, the complete set of curves for all grid cells
can be used to develop variable-rate N management plans that achieve the produc-
tion or environmental objectives for the entire field. It is convenient to fit probability
distributions to the data generated from historical weather simulations, because the
dataset will ultimately be used to develop N fertilizer recommendations for future
growing seasons in which weather conditions are unknown. By fitting probability
distributions to the simulated data for yield and unused N for past weather years,
the effect of unknown weather patterns on future yield and unused N can be charac-
terized in terms of chance or probability. Thus, N recommendations can be designed
with a level of certainty that a given yield threshold will be achieved or that an
unused N threshold will not be exceeded.

To proceed with this analysis, a Visual Basic application was written to manipu-
late the data within the Apollo prescription file and to fit appropriate probability dis-
tributions. Automation of this process within Visual Basic was important because of
the large number of datasets to which distributions were fitted. Distributions were fit
for both yield and unused N for each N rate in each grid cell (2 variables * 13 rates *
100 grid cells = 2600 distributional fits). Initial work focused on fitting normal prob-
ability distributions to both the yield and unused N datasets. However, further inves-
tigations using histograms and the Shapiro-Wilk test (Shapiro and Wilk, 1965;
Royston, 1995) revealed that the datasets were oftentimes severely non-normal.

In an effort to remedy this problem, several alternative distributions were
explored. Based on the results of v2 goodness-of-fit tests and visualization of distri-
butions fitted to histograms, the beta probability distribution was chosen for use
with the simulated yield data and the exponential probability distribution was
selected for use with the simulated data for unused N.

The flexibility of the beta distribution proved to be helpful for fitting the heavily
skewed simulated yield datasets in this research. The general formula for the prob-
ability density function of the beta distribution is

f ðxÞ ¼ ðx� aÞp�1ðb� xÞq�1

Bðp; qÞðb� aÞpþq�1
; a 6 x 6 b; p > 0; q > 0; ð3Þ

where p and q are shape parameters, a and b are the respective upper and lower
bounds of the distribution, and B(p,q) is the beta function (Johnson et al., 1994).
The beta function is

Bðp; qÞ ¼
Z 1

0

tp�1ð1� tÞq�1dt. ð4Þ

To fit a beta distribution, all four parameters, p, q, a, and b, must be estimated. In
this work, the lower bound, a, was assumed to be 0 for all yield datasets, since yield
cannot be negative. The three remaining parameters were estimated using a combi-
nation of maximum likelihood and method of moments estimation in an iterative
procedure, all implemented within the Visual Basic algorithm. Initially, the upper
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limit, b, was set to the largest value in each yield dataset. Next, the method of mo-
ments estimators (Johnson et al., 1994) for both p and q were calculated. All four
parameters were then used to compute the value of the likelihood function for the
beta distribution (Gnanadesikan et al., 1967). This process was iterated several hun-
dred times while incrementing the value of b by one in successive iterations. The val-
ues of p, q, a, and b that gave the maximum value for the likelihood function were
assumed to be the parameters that provided the best fit of Eq. (3) to a given yield
dataset. A unique set of distributional parameters was calculated for each of the
2600 histograms of simulated yield data. These parameters were then used to calcu-
late the cumulative beta probability distribution for each yield dataset. The cumula-
tive beta probability distribution, also known as the incomplete beta function ratio,
can be expressed as

Ixðp; qÞ ¼
R x

0
tp�1ð1� tÞq�1dt

Bðp; qÞ ; 0 6 x 6 1; p > 0; q > 0; ð5Þ

(Johnson et al., 1994). This equation restricts the lower and upper bound to 0 and 1,
respectively. Therefore, the parameter values, a and b, were used to scale each yield
data value down to within this required range. To solve the beta function (Eq. (4))
and the incomplete beta function ratio (Eq. (5)) for each yield dataset, numerical
approximations, translated from the C programming language, were incorporated
into the Visual Basic algorithm (Press et al., 1992).

Histograms of the simulated datasets for unused N in the soil at harvest suggested
that an exponential distribution would provide an appropriate fit. The probability
density function of the exponential distribution can be written as

f ðxÞ ¼ 1

b
e�ðx�lÞ=b; x P l; b > 0; ð6Þ

where l is a location parameter and b is a scale parameter. The location parameter for
all exponential distributions was set such that the lower asymptote was equal to the
smallest value for unused N in the dataset. As a result, parameter estimation was
much simpler for the exponential distribution compared to the beta distribution, be-
cause estimation of only one parameter, b, was required, and the maximum likelihood
estimator of b is simply the sample mean. The cumulative exponential distribution
function can be expressed as

F ðxÞ ¼ 1� e�ðx�lÞ=b; x P l; b > 0; ð7Þ
(Johnson et al., 1994). A short segment of code was written to calculate the cumula-
tive exponential distributions for each of the 2600 sets of simulated unused N data-
sets and added to the Visual Basic application.

2.5. Nitrogen management decisions

The families of cumulative beta probability distributions for yield and the fam-
ilies of cumulative exponential distributions for unused N at harvest were used to
assess the economic and environmental consequences associated with N management
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decisions. A comparison of two N management strategies was carried out to dem-
onstrate how the distributions could be used. The objective of the first N manage-
ment strategy was to maximize the profitability of the management practice for
the producer. Paz et al. (1999) presented a simple equation to calculate marginal
net return for N fertilizer management in corn:

Marginal net return ¼ Y � P c � N � P n; ð8Þ

where Y is the corn yield (kg ha�1), Pc is the price of corn ($ kg�1), N is the N appli-
cation rate (kg ha�1), and Pn is the price of N fertilizer ($ kg�1). For this study, Pc

was set to $0.086 kg�1 and Pn was set to $0.46 kg�1, which are current market values
for corn and N fertilizer in Iowa. Managing N to optimize long-term marginal net
return assures that producers can achieve the maximum possible profit from their
corn crop. However, this practice has been shown to have significant environmental
implications (Burkart and James, 1999; Goolsby et al., 2001), because unused NO3-
N is highly susceptible to loss from the agricultural system. Therefore, the objective
of the second N management strategy was to reduce the level of applied N to achieve
an environmental objective: leave less than 40 kg ha�1 of N in soil at harvest with a
probability of 80%. Because the two families of cumulative probability curves link
yield to unused N in the soil at harvest, they allow for the quantification of any pro-
duction losses that a producer might incur for managing N at levels below the pro-
duction optimal. In this way, the producer�s opportunity cost for applying reduced N
rates can be calculated by extending Eq. (8)

Opportunity cost ¼ ðY max � Y redÞ � P c � ðNmax � N redÞ � P n; ð9Þ
where Ymax and Nmax are the yield achieved and N rate used when maximizing net
return and Yred and Nred are the reduced yield and reduced N rate for managing
N to achieve the environmental objective. For the purpose of introducing this meth-
odology, the analysis was described in detail using grid cell #4 as an example. By
then repeating the analysis for all 100 grid cells, two variable-rate N prescription
maps were generated for the study area: one for maximizing the producer�s net return
and the other for accomplishing the environmental objective.
3. Results

3.1. Calibration results

Cell-level differences between measured and simulated yield as indicated by
RMSE ranged from 50 to 1075 kg ha�1 with an average RMSE of 490 kg ha�1

across all grid cells (Fig. 2). The average RMSE for grid cells dominated by the Can-
isteo, Clarion, Nicollet, Harps, and Okoboji soil types were 406, 649, 404, 472, and
318 kg ha�1, respectively. Errors for grid cells dominated by Clarion loam were
greater on average than that of the other soil types, indicating that the model had
more difficulty explaining yield variability in grid cells having this soil type. Clarion
loam is a gently sloping, well-drained soil on convex upland knolls (USDA-SCS,
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1981), meaning the soil type is generally present on the sideslopes of the swell and
swale topography typical of the central Iowa countryside. Therefore, a possible
explanation for the greater average RMSE in Clarion grid cells is that the model
does not adequately account for surface run-on and sub-surface water flow between
neighboring grid cells, the dynamics of which would be more significant for a sloped
topography. Another interesting note is that the aggregation of high RMSE grid
cells across the center of the field corresponds to the location of the north sideslope
of a well-defined gully that cuts through the study area. These results also suggest
that model calibration performance is spatially linked to topography. Errors for grid
cells dominated by the Okoboji silty clay loam were significantly lower than that of
the other soil types. Okoboji silty clay loam is a very poorly drained soil occurring in
concave depressions on uplands (USDA-SCS, 1981). Low RMSE values for the
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Okoboji dominated grid cells indicate that the model performed well in mimicking
the water flow dynamics in these poorly drained areas.

The map of cell-level calibration errors (Fig. 2) is useful for assessing the spatial
distribution of RMSE across the study area; however, the RMSE associated with
an individual growing season in the calibration dataset is lost during the averaging
process of the RMSE calculation (Eq. (2)). In order to visualize the error associ-
ated with individual growing seasons, a one-to-one plot of simulated versus mea-
sured yield was constructed (Fig. 3). This plot illustrates the relationship
between measured and simulated yield for each of the five calibration years and
for each of the 100 grid cells, where the vertical distance between an individual
data point and the one-to-one line represents the difference between measured
and simulated yield. Cell-level yield for the 1994, 1998, and 2002 growing seasons
tended to cluster at 10,600 kg ha�1; however, deviations from the one-to-one line
are more apparent for the 1998 and 1994 seasons than for the 2002 growing sea-
son. Cell-level yield during the 1996 and 2000 growing seasons tended to cluster
around 9250 and 7500 kg ha�1, respectively. These lower yielding growing seasons
improved the ability of the model to explain year-to-year variation by increasing
the yield range in the calibration dataset. Overall, the model was able to explain
much of the yield variability (r2 = 0.89) when considering all 100 grid cells and
all five growing seasons used for calibration (Table 1). The strength of linear
regression was reduced when considering the fit for any individual year, because
the cell-level yields for single seasons years tended to cluster together in relatively
narrow ranges (Fig. 3). However, RMSE calculations for any given production
year showed that deviations between field-level measured and simulated yields were
not greater than 600 kg ha�1 (Table 1). Since past research has supported RMSE
and related statistics over correlation-regression analysis for testing crop model
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Table 1
Field-level measured versus predicted yield relationships

Production year Measured yield (kg ha�1) Predicted yield (kg ha�1) RMSE (kg ha�1) r2

1994 10,788 11,224 520 0.30
1996 9137 9039 217 0.63
1998 10,218 10,773 598 0.47
2000 7484 7617 286 0.26
2002 10,625 10,786 323 0.31
All years 9650 9888 490 0.89
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accuracy (Kobayashi and Salam, 2000), it is expected that the lower r2 values for
individual seasons can be ignored in favor of the more descriptive RMSE
calculations.

Values for the two optimized parameters, resulting from applying the calibration
procedure within each grid cell, were within the expected ranges. The average value
for effective tile drainage rate was 0.107 day�1 with a standard deviation of
0.059 day�1 across 100 grid cells. The minimum value for this parameter was
0.011 day�1 in grid cell #29, and the maximum value was 0.246 day�1 in grid cell
#26. These values fell within the expected range of 0.01 and 0.25 day�1 for effective
tile drainage rate. The average value for saturated hydraulic conductivity of the deep
layer was 0.790 cm day�1 with a standard deviation of 0.646 cm day�1 across 100 grid
cells. The minimum value for this parameter was 0.094 cm day�1 in grid cell #83, and
the maximum value was 1.976 cm day�1 in grid cell #54. These values fell within the
expect range of 0.001 and 2 cm day�1 for saturated hydraulic conductivity.

3.2. Grid cell #4 example

Two families of cumulative probability distributions were produced for each grid
cell. Since it is not feasible to show the resulting 200 graphs, the results of grid cell #4
were selected randomly and presented as an example. The cumulative beta probabil-
ity distributions of yield for grid cell #4 demonstrate how corn yield and N rate can
be related for making N management decisions. For each of the 13 N rates, model
simulations provided 37 values for yield in grid cell #4, representing the seasonal
corn yield achieved with an N rate given the weather conditions of the past 37 grow-
ing seasons. An example histogram for the simulated yield values in grid cell #4 at an
N rate of 220 kg ha�1 demonstrates how the yield datasets can be well characterized
using a beta distribution (Fig. 4). Distributions of simulated yield for other N rates
and grid cells typically resembled this histogram in which the lack of an upper tail
skewed the distribution heavily to the left. One interpretation of this occurrence is
that the weather conditions for most seasons allowed corn yields to approach the
potential upper limit for yield in this field. In other seasons when weather conditions
were less favorable, simulated yields were significantly lower than the yield potential
which created the tapering effect on the left side of the distribution. For this histo-
gram, the four beta parameters, p, q, a, and b, estimated for the fit were 3.60,
0.98, 0.20 and 11,633, respectively. By fitting unique beta distributions to each of
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the 13 yield histograms for N rates in grid cell #4 and calculating the cumulative beta
probability distribution using the resulting beta parameters, a family of curves that
explain the chance of corn yield response to N rates given the weather conditions of
the past 37 years was generated (Fig. 5). At the time N management decisions are
made, these curves are used with the understanding that corn yield response in grid
cell #4 will be heavily influenced by the unknown pattern of weather encountered
between the N application and harvest. However, based on the patterns of weather
seen in previous years, it is possible to describe future corn yield in terms of chance
or probability, such that N management decisions can be made less blindly. Cumu-
lative beta probability distributions of yield in grid cell #4 generally showed an
increasing trend with N rate at equal probability levels. An exception occurred in
the range of the 0% and 20% probability thresholds of yield between 4000 and
8000 kg ha�1. A likely explanation is that small levels of N stress aided root devel-
opment early in the season, which better prepared the crop to combat water stress
and increase yield in these relatively low yielding years. This area of the curve is also
perhaps less important, because producers will likely be more interested in yield
probabilities much greater than 10%. The beta distribution also has difficulty fitting
the high yield end of the histogram in Fig. 4, and the resulting probability curves in
Fig. 5 are awkwardly shaped with no roll-off effect in the upper portion of the dis-
tribution. These results provide evidence that further analysis may be more accurate
if focused away from the tails of the distribution. Finally, the yield distributions for
grid cell #4 did not change significantly for N rates above 280 kg ha�1, indicating
that yield was not affected by increasing N rates above this level.
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Similar to the cumulative beta probability distributions of yield, the cumulative
exponential probability distributions of unused N left in the soil at harvest for grid
cell #4 demonstrate how unused N and N rate can be related for making N manage-
ment decisions. For each of 13 N rates, model simulations provided 37 values for
unused N in grid cell #4, representing the seasonal post-harvest soil N content
obtained with an N rate given the weather conditions of the past 37 growing seasons.
An example histogram for the simulated unused N values in grid cell #4 at an N rate
of 220 kg ha�1 suggests that the unused N datasets can be well characterized using an
exponential distribution (Fig. 6). Distributions of unused N for other N rates and
other grid cells typically resembled this histogram with a majority of growing seasons
having relatively small amounts of N left in the soil, particularly for the lower N
rates. In other seasons when weather conditions were not favorable to uptake of
N by plants, greater amounts of N were left in the soil and this created the tapering
effect on the right side of the distribution. As N rates were increased, the right side of
the distribution tended to taper off more slowly. For the histogram in Fig. 6, a value
of 13.73 was estimated for the exponential parameter, b. The distribution was
adjusted right by a factor of 16.58, the lowest unused N value in the 220 kg ha�1

dataset for grid cell #4. Similar to the curves for yield, the cumulative exponential
probability distributions of unused N explain the chance that different N rates will
leave N in the soil at harvest given the weather conditions of the past 37 growing
seasons (Fig. 7). This family of curves permits the addition of an environmental
component to N management decisions, such that N applications can be designed
to achieve a balance between production and environmental goals. Cumulative
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exponential probability distributions of unused N for grid cell #4 showed an increas-
ing trend with N rate at equal probability levels. An interesting feature of the unused
N probability curves is that, even for the lowest N rate, the simulations always
resulted a small amount of N, approximately 15 kg ha�1, left in the soil at harvest.
This phenomenon in the simulation results may be attributed to mineralization of
N at the end of the growing season after the crop was no longer taking up nutrients,
or it may an artifact of the model.

3.3. Statistics over 100 grid cells per N rate

In the process of fitting a distribution and developing cumulative probability
curves for yield and unused N, one data dimension, the number of weather years,
is essentially removed from prescription simulation datasets. The data can then be
described in terms of beta distribution parameters, exponential distribution param-
eters, and cumulative probability distributions over the two remaining data dimen-
sions, number of N rates and number of grid cells. However, it is not feasible to show
the histograms, distributional fits, and cumulative probability curves for every sim-
ulated N rate in every grid cell within the study area. Instead, the mean and standard
deviation was used to summarize the distribution of estimated beta and exponential
parameters at each N level over all 100 grid cells (Table 2). As expected, the prescrip-
tion simulations showed that an increase in N rate increased yield in grid cells on
average, but it also increased the amount of unused N in the soil after harvest.
Because yield increased with N rate, the upper limit beta parameter, b, for the yield
distributions also increased on average with N rate. Standard deviations for yield,
unused N, and b all showed a general increasing trend with N rate. The beta shape
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parameter, p, showed a decreasing trend with N rate on average across all grid cells.
When the N rate increased above 180 kg ha�1, the p parameter was on average
approximately 4.0 with a standard deviation of 0.7. The q parameter of the beta dis-
tribution decreased from 3.0 at 80 kg ha�1 to 0.91 at 160 kg ha�1 and then increased
to 2.1 as N rate increased to 320 kg ha�1. For the exponential distributions of unused
N, the average b parameter across all grid cells and its standard deviation both
Table 2
Summary statistics (average and standard deviation) for the 37-year average yield, beta parameters, the 37-
year average unused N, and exponential parameters for each N rate over 100 grid cells

N rate
(kg ha�1)

Yield
(kg ha�1)

Beta Parameters Unused N
(kg ha�1)

Exponential param.

b p q b Scale

Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD

80 5386 228 6985 133 10.7 4.96 3.03 1.30 21.7 3.1 4.4 2.7 17.3 1.3
100 6830 340 8068 163 23.5 15.7 3.82 2.35 22.6 3.9 5.3 3.5 17.3 1.4
120 7604 397 8831 162 19.4 11.8 2.78 1.55 23.6 4.7 6.1 4.4 17.5 1.4
140 8064 434 9460 188 9.53 4.89 1.51 0.76 24.7 5.8 7.1 5.5 17.6 1.4
160 8337 446 9926 114 5.13 2.11 0.91 0.34 26.2 7.0 8.2 6.9 18.0 1.4
180 8522 463 10,553 220 4.28 1.32 0.99 0.29 29.1 8.2 10.9 8.0 18.2 1.4
200 8669 469 10,959 171 3.65 0.84 0.94 0.21 32.8 9.3 14.5 9.2 18.2 1.4
220 8843 501 11,680 237 3.51 0.71 1.12 0.30 37.5 10.7 19.2 10.5 18.3 1.5
240 8982 531 12,407 349 3.59 0.70 1.38 0.37 44.3 12.1 25.7 12.0 18.5 1.4
260 9059 532 13,151 420 3.87 0.64 1.74 0.34 52.3 13.4 33.7 13.3 18.6 1.4
280 9105 532 13,727 555 4.04 0.69 2.05 0.39 61.8 15.0 42.9 14.8 18.9 1.5
300 9131 516 13,891 590 4.04 0.69 2.11 0.40 73.7 16.2 52.8 15.5 20.8 2.1
320 9152 498 13,904 581 4.03 0.68 2.09 0.40 88.2 16.6 62.7 15.4 25.4 4.5
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increased with increasing N rate. This was expected since a larger b value makes the
exponential distribution decay more slowly, representing an increased frequency of
larger amounts of N left unused. For all but the highest two rates, the average loca-
tion factor for the exponential distribution remained between 17 and 19 with a low
standard deviation, indicating most N rates and most grid cells had at least one sea-
son with less than 20 kg ha�1 N left unused. The spatial distribution of summary sta-
tistics similar to those in Table 2 could also be studied by averaging over N rate
instead of over grid cells; however, this makes less sense because only one N rate
would be applied in a given season. An investigation into the spatial effect of grid
cell location will be the subject of the next section, which illustrates the use of the
cumulative probability curves to select N rates and develop N prescriptions that sat-
isfy production and/or environmental requirements.
4. Discussion

4.1. Environmental cost of optimizing economic return

For a farming operation to be profitable, producers must use management prac-
tices that maximize marginal net return (Eq. (8)). Continuing with the analysis of
grid cell #4, calculations were carried out to determine the relationship between N
rates and marginal net return. Average marginal net return represents the average
return for each N rate over all 37 growing seasons. Maximum and minimum mar-
ginal net return represents the greatest and least return achieved with each N rate
in a single year. For grid cell #4, an N rate of 240 kg ha�1 maximized the average
marginal net return over 37 growing seasons (Fig. 8). If the producer applied this
rate to grid cell #4 in each year, there would be a 50:50 chance that the marginal
net return would be greater than or less than $689.40 ha�1. However, the uncertainty
in marginal net return values for individual seasons is large for the 240 kg ha�1 N
rate, because the range between minimum and maximum net return values widen sig-
nificantly at the higher N rates. In one of the 37 years, the 240 kg ha�1 N rate may
result in a net return of $953.76 ha�1 while in another it may result in a return of
only $188.36 ha�1 (Fig. 8). The cumulative beta probability distributions of yield
now become useful for determining the expected yield from this management prac-
tice. By applying the 240 kg ha�1 N rate to grid cell #4, the producer could expect a
50:50 chance of yield greater than 9681 kg ha�1 in any given growing season. Simi-
larly, the producer could expect an 80% chance of yield less than 11,333 kg ha�1 or a
20% chance of yield greater than 11,333 kg ha�1 (Fig. 5).

Given that the producer must apply 240 kg ha�1 of N in grid cell #4 to maximize
average marginal net return over 37 growing seasons, the cumulative exponential
probability distributions of unused N (Fig. 7) are now useful for determining the
environmental risk associated with this management practice. The curve for an N
rate of 240 kg ha�1 in grid cell #4 shows that there is a 50:50 chance that the amount
of unused N left in the soil will be greater than 30.6 kg ha�1. Similarly, there is an
80% probability that the amount of unused N left in the soil will be less than
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49.4 kg ha�1 or a 20% probability that unused N will be greater than 49.4 kg ha�1.
This represents the environmental risk associated with applying the 240 kg ha�1 N
rate in grid cell #4, because N left unused in the soil will be highly susceptible to loss
in the months between growing seasons. In terms of the quantity of N left unused in
soil when optimizing producer economics, the grid cell #4 value of 49.4 kg ha�1 at
the 80% probability level is relatively moderate, only slightly lower than the field
average of 56.2 kg ha�1. On the other hand, in grid cell #74, the N management
practice that optimized marginal net return (260 kg ha�1 N) had an 80% chance of
leaving 120.9 kg ha�1 or less of unused N in the soil at harvest. In other words, if
N is managed to optimize economic return in this grid cell, nearly half of the applied
N will remain in the soil after harvest in 20% of growing seasons.

By repeating this analysis for all 100 grid cells, an N prescription map was devel-
oped for optimizing marginal net return across the entire study area (Fig. 9). Since
the model runs for the prescription analysis were performed with the assumption of
nearly zero initial N in the soil, measurements of the actual available N in the soil
prior to a fertilizer application should be used as a credit for the N rates given in this
prescription. The average N rate to optimize production across all 100 grid cells was
233 kg ha�1 with a standard deviation of 21 kg ha�1 (Table 3). Based on the weather
of the past 37 growing seasons, this variable-rate N prescription would have an 80%
chance of producing a field average crop yield of 11,009 kg ha�1 or less with a stan-
dard deviation of 589 kg ha�1 across grid cells. Also, the management practice would
have an 80% chance of leaving a field level average of 56.2 kg ha�1 or less unused N
in the soil at harvest with a standard deviation of 16.7 kg ha�1 across grid cells.



Fig. 9. Nitrogen prescription for optimizing marginal net return over 37 growing seasons.

292 K.R. Thorp et al. / Agricultural Systems 89 (2006) 272–298
Finally, this N prescription would have an 80% chance of achieving a field average
marginal net return of less than $839.44 ha�1 with a standard deviation of
$43.10 ha�1 over 100 grid cells.

4.2. Opportunity cost of environmental protection

Managing N to optimize marginal net return assures that producers can achieve
the maximum possible profit from their corn crop. However, this practice can have
significant environmental impacts in some areas of an agricultural field, because
there is a greater chance that a large quantity of N will remain in the soil after har-
vest. To reduce the environmental impacts of corn production, producers must begin
managing N to achieve a balance between environmental and production objectives.
For example, assume that lawmakers establish an environmental policy stating that



Table 3
Field-level statistics over all 100 grid cells for the economically optimum prescription at the 80%
probability threshold

N rate
(kg ha�1)

Yield
(kg ha�1)

Unused N
(kg ha�1)

Marginal net return
($ ha�1)

Average 233 11,009 56.2 839.44
Standard deviation 21 589 16.7 43.10
Minimum 160 8910 35.0 692.66
Maximum 260 11,816 120.9 896.58
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unused N left in the soil after harvest must be less than 40 kg ha�1 80% of the time.
Cumulative exponential probability of unused N (Fig. 7) can now be used to deter-
mine the rate of N that will meet this objective for grid cell #4 of the study area. Fur-
thermore, we can use cumulative beta probability of yield (Fig. 5) to determine the
yield and the producer�s opportunity cost (Eq. (9)), which is the profit that the pro-
ducer foregoes by managing N to meet to the environmental restriction. With linear
interpolation between the cumulative exponential probability curves for the 220 and
240 kg ha�1 N rates, an N rate of 222 kg ha�1 insures that the amount of unused N
will be less than 40 kg ha�1 with a probability of 80% (Fig. 7). Then using the cumu-
lative beta probability of yield curves, an N rate of 222 kg ha�1 will give a crop yield
of 11,006 kg ha�1 80% of the time (Fig. 5). The producer�s opportunity cost for
reducing N rates can now be calculated using Eq. (9). For grid cell #4, the producer�s
opportunity cost for leaving less than 40 kg ha�1 of unused N in the soil at harvest
with a probability of 80% is $20.01 ha�1.

By repeating this analysis for all 100 grid cells, an N prescription map was devel-
oped for meeting the environmental objective of leaving less than 40 kg ha�1 unused
N in the soil at harvest with 80% probability across the entire study area (Fig. 10).
Again, since the model runs for the prescription analysis were performed with the
assumption of nearly zero initial N in the soil, measurements of the actual available
N in the soil prior to a fertilizer application should be used to credit the N rates given
in this prescription. The average N rate to accomplish the environmental objective
across all 100 grid cells was 194 kg ha�1 with a standard deviation of 41 kg ha�1

(Table 4). Based on the weather of the past 37 growing seasons, this variable-rate N
prescription would have an 80% chance of producing a field average crop yield of
10,240 kg ha�1 or less with a standard deviation of 1146 kg ha�1 across grid cells.
Also, this management practice would have an 80% chance of achieving a field average
marginal net return of less than $791.32 ha�1 with a standard deviation of $79.81 ha�1

over 100 grid cells. The field level average opportunity cost incurred by the producer
using this precision N management strategy would be $48.12 ha�1 with standard devi-
ation of $53.13 ha�1 across the 100 grid cells. At this cost, the average amount of N left
unused in the soil at harvest would be reduced by greater than 16.2 kg ha�1 in 20% of
growing seasons. Interestingly, in seven of the 100 grid cells the producer�s opportu-
nity cost was negative, indicating that the prescription for optimizing net return
already leaves less than 40 kg ha�1 of unused N in soil with 80% probability. For these
grid cells, the N rate that forces the environmental objective is actually greater than the



Fig. 10. Nitrogen prescription for not exceeding 40 kg ha�1 of unused N in the soil at harvest in 80% of
growing seasons.

294 K.R. Thorp et al. / Agricultural Systems 89 (2006) 272–298
N rate that optimizes economic return. Obviously, the producer should use the eco-
nomically optimal N rate for these grid cells. A map of the spatial distribution of
opportunity cost demonstrates how an environmentally conscience management
scenario for N fertilizer is quite costly to the producer in some areas of the field,
but in other grid cells it costs the producer nothing (Fig. 11). As expected, the grid cells
that require the lowest rates to meet the environmental objective (Fig. 10) also cost the
producer significantly to manage in this way (Fig. 11).

The environmental policy of leaving no more than 40 kg ha�1 of unused N in the
soil after harvest with 80% probability was picked at random for demonstration pur-
poses. However, if such a strategy such were actually implemented to legislate
requirements for agricultural N management, the future economic prosperity of



Table 4
Field-level statistics over all 100 grid cells for the environmental objective of no more than 40 kg ha�1 of
unused N in the soil at harvest in 80% of growing seasons

N rate
(kg ha�1)

Yield
(kg ha�1)

Unused N
(kg ha�1)

Marginal net return
($ ha�1)

Opportunity cost
($ ha�1)

Average 194 10,240 40 791.32 48.12
Standard deviation 41 1146 0 79.81 53.13
Minimum 90 6778 40 541.13 �10.52
Maximum 238 11,383 40 869.70 246.65
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the agricultural industry would depend heavily on a sound methodology for appro-
priately selecting the environmental restriction to be met. Inappropriate or unrealis-
tic expectations could have severe effects on the economics of a farming operation.
Fig. 11. Producer�s opportunity cost for leaving less than 40 kg ha�1 of unused N in the soil 80% of the
time.
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To aid in this policy making process, the probability curves can be manipulated to
obtain the producer�s opportunity cost for many possible environmental policy sce-
narios (Fig. 12). To develop the plot, the producer�s opportunity cost was determined
at several different probability levels while incrementing the restriction for unused N
by one over the range of 15–65 kg ha�1. This type of plot would give a policymaker a
tool for judging the degree of impact that a particular policy, in terms of the restric-
tion for unused N left in the soil, would have on a producer. For the previous exam-
ple, an environmental restriction of no more than 40 kg ha�1 of unused N in the soil
with 80% probability was implemented. Fig. 12 demonstrates that this scenario is rel-
atively lenient for grid cell #4, since it costs the producer only $20.01 ha�1 in that
grid cell. However, if the environmental policy had been established to be no more
than 20 kg ha�1 of unused N in the soil with 80% probability, the opportunity cost
jumps to $360.95 ha�1 in grid cell #4. Such a policy would not be economically fea-
sible for the corn grower. Effective policies for restricting the amount of unused N in
the soil after harvest must strive to achieve a proper balance between environmental
risk and producer economics.
5. Conclusions

Precision management of N fertilizer has not become common practice in the
midwestern United States, because the economic cost incurred by applying
reduced N rates has not been adequately demonstrated. Such information has
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been difficult to generate because the dynamics of N movement in an agricultural
system is highly complex and because it varies depending on spatial location and
weather patterns. Crop growth models can serve as a useful tool to make sense of
this complex dynamic system. Given the soil properties, management practices,
and historical weather information for specific study areas, model simulations
are able to demonstrate how various N management scenarios would have
affected yield and unused N in the soil at harvest under the weather conditions
of past growing seasons. By fitting cumulative probability distributions to the
yield and unused N data, simulation results from past growing seasons can be
used to look forward in time, and the uncertainty associated with the effect of
unknown future weather on future yield and future unused N left in the soil
can be discussed in terms of probability. On the basis of chance, these probability
distributions effectively unite yield and unused N left behind, the two most impor-
tant variables for addressing the production and environmental concerns of N
management in agricultural cropping systems.
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